Pearson
 Edexcel

Mark Scheme (Results)

Summer 2018

Pearson Edexcel GCSE
In Physics (1PH0) Paper 1F

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at:www.pearson.com/uk

Summer 2018
Publications Code 1PH0_1F_1806_MS
All the material in this publication is copyright
© Pearson Education Ltd 2018

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Mark schemes have been developed so that the rubrics of each mark scheme reflects the characteristics of the skills within the AO being targeted and the requirements of the command word. So for example the command word 'Explain' requires an identification of a point and then reasoning/justification of the point.

Explain questions can be asked across all AOs. The distinction comes whether the identification is via a judgment made to reach a conclusion, or, making a point through application of knowledge to reason/justify the point made through application of understanding. It is the combination and linkage of the marking points that is needed to gain full marks.

When marking questions with a 'describe' or 'explain' command word, the detailed marking guidance below should be consulted to ensure consistency of marking.

Assessment Objective		Command Word	
Strand	Element	Describe	Explain
AO1*		An answer that combines the marking points to provide a logical description	An explanation that links identification of a point with reasoning/justification(s) as required
AO2		An answer that combines the marking points to provide a logical description, showing application of knowledge and understanding	An explanation that links identification of a point (by applying knowledge) with reasoning/justification (application of understanding)
AO3	1a and 1b	An answer that combines points of interpretation/evaluation to provide a logical description	
AO3	$\begin{aligned} & 2 a \text { and } \\ & 2 b \end{aligned}$		An explanation that combines identification via a judgment to reach a conclusion via justification/reasoning
AO3	3 a	An answer that combines the marking points to provide a logical description of the plan/method/experiment	
AO3	3 b		An explanation that combines identifying an improvement of the experimental procedure with a linked justification/reasoning

[^0]| Question
 Number | Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{1 (a)}$ | B $1.0 \mathrm{~m} / \mathrm{s} \quad$ The only correct answer is B | (1) |
| A $0.1 \mathrm{~m} / \mathrm{s}$ is incorrect, being 1 metre every 10s, insectcrawling pace
 C $10 \mathrm{~m} / \mathrm{s}$ is incorrect, being an Olympic sprinter's pace,
 much too fast for 'walking'
 D $100 \mathrm{~m} / \mathrm{s}$ is incorrect, being a very fast sport's car's pace | AO 11 | |

Question Number	Answer	Mark
$\mathbf{1 (b)}$	weight / force (accept circle around weight if not contradicted on answer line)	AO 12

Question Number	Answer	Additional guidance	Mark
1(c)	substitution (1) $(F=) 0.10 \times 2.0$ evaluation (1) 0.2(0) unit (1) N	$100 \times 2(\text { using } 0.10 \mathrm{~kg}=100 \mathrm{~g})$ reject 0.10×2.0^{2} and the follow up evaluation (equation given should be used) correct answer without working gets 2 marks allow 1 mark total for 2 with any other power of ten, so that includes 200 for example separate unit mark newtons / Newtons accept lowercase ' n ' for the abbreviated unit accept $\mathrm{kg} \mathrm{ms}^{-2}$ accept $200 \mathrm{~g} \mathrm{~ms}^{-2}$ for 3 marks	(3) AO 21

Question Number	Answer	Additional guidance	Mark
1(d)	• direction (1)	answers only acceptable in given order	(2) AO 21
	or magnitude (1)		

Question Number	Answer	Additional guidance	Mark
$\mathbf{2 (a) (i)}$	recall speed = distance	time accept any correct rearrangement or of s, d and t may use v for speed and x for distance ignore use of triangles	(1)

Question Number	Answer	Additional guidance	Mark
2(a)(ii)	substitution (1) (speed) $=\frac{220}{0.7(0)}$	allow ecf from part (i) for this mark only	(2) evaluation (1) 21 $310(m / s)$
	allow any numbers that round to 310 e.g. 314 award full marks for the correct answer without working		

Question Number	Answer	Additional guidance	Mark
2(b)	an explanation linking: • measure across more than one (wavelength) (1)	use a more accurate device (finer divisions) use a camera / picture/strobe(light) (so the waves are not moving)	AO 3 3b • divide by the number of wavelengths (1)
count the number of wavelengths must be talking about measuring, NOT changing the wavelength etc.			

Question Number	Answer	Additional guidance	Mark
2(c)	a description to include: - Iongitudinal - (vibrations) parallel to (direction of travel) (1)	back and forth (oscillations)/ compressions or rarefactions	AO 1 1
- transverse - (vibrations) at right angles to (direction of travel) (1)	up and down (oscillations)		
- (connection between) direction of travel with (direction of) vibrations (1)			

$\left.\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { Question } \\ \text { Number }\end{array} & \text { Answer } & \text { Additional guidance } & \text { Mark } \\ \hline \text { 3(a)(i) } & \begin{array}{l}\text { points plotted to within } \pm 1 \\ \text { small square } \\ (10,60 \\ (20,37) \\ (1)\end{array} & & \text { (2) } \\ \text { AO 2 1 }\end{array}\right]$

Question Number	Answer	Additional guidance	Mark
3(a)(ii)	point at 15,55 circled (1)		(1)
			AO 2 1

Question Number	Answer	Additional guidance	Mark
3(a)(iii)	best fit curve passing through most of the points seen, apart from 15,55 (1)	reject tramlining (multiple lines/curves) ignore slight shakiness in drawing	(1) AO 3 2a

Question Number	Answer	Additional guidance	Mark
3(a)(iv)	the curve will be above the first one (starting at the same point) / it will take longer to cool down / cools more slowly (1)	less steep ignore all comments about heat / the process; the question is about the curve	AO 2 1

Question Number	Answer	Additional guidance	Mark
$\mathbf{3 (b) (i)}$	wavelength for object $L=84 .(0)$ to 85(.0)($\mu \mathrm{m})(1)$ wavelength for object $M=93 .(0)$ to $95 .(0)(\mu \mathrm{m})(1)$	estimates, so we are being generous with this	(2) AO 3 2a

Question Number	Answer	Additional guidance	Mark
3(b)(ii)	object L and shorter wavelength (1)		(1) AO 3 1a

Question Number	Answer	Additional guidance	Mark
$\mathbf{4 (a) (i)}$	kinetic (1)	only (adding another incorrect alternative negates)	AO 21

Question Number	Answer	Additional guidance	Mark
4(a)(ii)	any one of increase the speed (of spinning) (1)	accept (idea of) faster	(1)
AO 21			
increase the mass / weight (of the flywheel) (1)	ignore make it bigger		

Question Number	Answer	Additional guidance	Mark
4(b)(i)	substitution (1) $(\Delta G P E ~=) 65 \times 10 \times 200$ evaluation (1) $1.3 \times 10^{5} / 130000(\mathrm{~J})$	allow substitution mark with $65000(\mathrm{~g})$	AO 21 allow 1 mark for answers that round to 1.3 with any other power of ten do not allow 13000 award full marks for the correct answer without working

Question Number	Answer	Additional guidance	Mark
4(b)(ii)	substitution (1) (KE) $1 / 2 \times 65 \times 36\left({ }^{2}\right)$ squaring (1) $36^{2} \quad(=1296)$ (completing) evaluation (1) $42120 / 4.2(1) \times 10^{4} \quad(\mathrm{~J})$	using $36 \rightarrow 1170$ (J) OR $36 \times 2 \rightarrow 2340$ (J) scores 2 marks (apply power of ten error as well if occurring e.g. 117000 (J) gets 1 mark) award full marks for the correct answer without working allow 2 marks for answers that round to 4.2 with any other power of ten omitting $1 / 2$ gives 84240(J) scores 2 marks	(3) AO 21

Question Number	Answer	Additional guidance	Mark
4(c)	a description to include 3 points from: - measure a distance (at the bottom) / use mark(er)s (certain distance apart) (1) - starting timer (at first mark(er)) (1) - stopping timer (at $2^{\text {nd }}$ mark(er)) OR measures a time (interval) (1) - (use speed) $=$ distance/time (1)	use a light gate (or equivalent sensors idea) not over whole slope for this mark point use of video / (speed) camera / interrupts the light beam accept any time measured for this mp including data logger OR timer / stopwatch	(3) AO 22

Question Number	Answer	Mark
5(a)	proton(s)	(1)
		AO 11

Question Number	Answer	Additional guidance	Mark
5(b)(i)	a description referring to:	fusion involves coming together / joining of particles / nuclei / atoms (1)	not just 'fuse together' that's just restating - more explanation needed
fission involves (larger) particle(s) / nuclei /atoms breaking up (1)	particles etc. coming apart / separating no marks if just objects / things joining / coming apart		

Question Number	Answer	Mark
5(b)(ii)	D protons The only correct answer is D A 'beta particles' is incorrect, they are not found in nuclei to facilitate that repulsion B 'electrons' is incorrect, for the same reason as A C'neutrons' is incorrect as they don't repel each other	AO 11

Question Number	Answer	Additional guidance	Mark
5(c)(i)	$\begin{aligned} & \text { substitution (1) } \\ & \frac{845000}{0.0394} \\ & \text { evaluation (1) } 21000000 \end{aligned}$	answers that round to 21000000 $2.1(45) \times 10^{7}$ etc. award full marks for the correct answer without working	(2) AO 21

Question Number	Answer	Additional guidance	Mark
5(c)(ii)	any two from: - fusion power gives (many) more times the energy output (for the same mass used) no greenhouse gases / CO_{2} emissions (produced with the fusion alternative)	may quote numbers here accept no or less pollution / no or less harmful gases etc.	(2)

Question Number	Answer	Additional guidance	Mark
5(c)(iii)	any two from: •problem of containment (the fusion gases / isotopes at high temperatures) (maintaining) high temperature (maintaining) high pressure	(2)	AO 21

Question Number	Answer	Additional guidance	Mark
6(a)	any two sources from: • oil	accept petrol / diesel for oil	AO 11

Question Number	Answer	Additional guidance	Mark
6(b)(i)	bioenergy	biofuel / biomass	(1)
			AO 3 1b

Question Number	Answer	Additional guidance	Mark
6(b)(ii)	largest area / fraction / percentage (idea)	must be referring to the chart, not just repeating 4bi stem- can't have greatest/ largest amount by itself	(1) AO 3 1b

Question Number	Answer	Additional guidance	Mark
6(b)(iii)	wind		(1) AO 3 1b

Question Number	Answer	Additional guidance	Mark
6(c)	discussion to involve two points each giving change and effect (max 4 marks) some examples: change: biomass-solar-geothermal (fraction) increases (1) effect: e.g. reduces greenhouse gas / CO_{2} emissions (1) change: 'wind' (fraction) increases (1) effect: e.g. visual/noise pollution arguments (1) change: 'natural gas' (fraction) increases (1) effect: e.g. contributes to global warming (1) change: 'uranium' (fraction) decreases (1) effect: e.g. less radioactive waste (1)	ignore vague responses such as 'environmentally friendly', less pollution etc. candidates may give positive or negative effects for this change (and for oil) allow decreases (with a correct accompanying effect for 2 marks) accept conserves nonrenewables but not just 'more renewable'	(4) AO 3 2a AO 3 2b

Question Number	Answer	Additional guidance	Mark
6(d)	an explanation linking use of lubrication / oil (1) to reduce friction (between parts) (1)		(2)

Question Number	Answer	Mark
7(a)(i)	Aconverging lens forming a real image The only correct answer is A B 'diverging lens forming a real image' is incorrect since the lens drawn in the diagram is not diverging C 'converging lens forming a virtual image' is incorrect, since the diagram shows rays coming to a focus (on a screen if placed there) D 'diverging lens forming a virtual image' is incorrect, since the diagram shows neither a diverging image or the formation of a virtual image	(1)

Question Number	Answer	Mark
7(a)(ii)	C ' R^{\prime} The only correct answer is ' R^{\prime} ' \boldsymbol{P}^{\prime} ' is incorrect, being a distractor, showing a width of rays ' \boldsymbol{Q} ' is incorrect, being a distractor showing an arbitrary distance to the lens distance ' S^{\prime} is incorrect, being a distractor showing an overall distance	(1) AO 3 1b

Question Number	Answer	Additional guidance	Mark
7(b)	substitution (1) \qquad 17 or 0.17 evaluation (1) 5.882... evaluation to 2 sf (1) 5.9 (any answer to 2 sf for this mark, but not if wrong rounding is seen)	lose this mark if there is any other power of $\mathbf{1 0}$ error but then apply ecf (e.g. 1/1.7) so 0.588 then $=1$ mark for that ecf independent mark award full marks for the correct answer without working	(3) AO 21

Question Number	Answer	Mark
7(c)	Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme. The indicative content below is not prescriptive, and candidates are not required to include all the material which is indicated as relevant. Additional content included in the response must be scientific and relevant. AO1 strand 1 (6) - idea that telescopic evidence supported the heliocentric model e.g. observing the moons of J upiter supported a sun-centred solar system - detail e.g. it was Galileo's observations of the moons of J upiter - the moons rotate around Jupiter i.e. not everything rotates about the earth - other observations by telescope - discoveries of the planets Uranus and Neptune + the asteroid belt - (detailed) photographic evidence - use of computer modelling - satellite observations - heliocentric model verified by Voyager missions (space probes)	(6) AO 11

Level	Mark	Descriptor
	0	- No rewardable material.
Level 1	1-2	- Demonstrates elements of physics understanding, some of which is inaccurate. Understanding of scientific ideas lacks detail. (AO1) - Presents an explanation with some structure and coherence. (AO1)
Level 2	3-4	- Demonstrates physics understanding, which is mostly relevant but may include some inaccuracies. Understanding of scientific ideas is not fully detailed and/or developed. (AO1) - Presents an explanation that has a structure which is mostly clear, coherent and logical. (AO1)
Level 3	5-6	- Demonstrates accurate and relevant physics understanding throughout. Understanding of the scientific ideas is detailed and fully developed. (AO1) - Presents an explanation that has a well-developed structure which is clear, coherent and logical. (AO1)

Question Number	Answer	Mark
$\mathbf{8 (a) (i)}$	D refraction The only correct answer is D A 'deflection' is an incorrect distracting description $B \quad$ 'incidence' is incorrect, that would be angle X C 'reflection' is incorrect, no reflection being shown in the diagram	(1)

Question Number	Answer	Additional guidance	Mark
8(a)(ii)	any pair of coordinates selected from the line (1)	e.g. 20 and (13 or 14) or 10 and (6 or 7) ignore any units given	(2) in range $\rightarrow 0.6(0)$ to $0.7(0)(1)$
award full marks for a correct answer without working			

Question Number	Answer	Additional guidance	Mark
8(a)(iii)	an explanation linking:	allow 'more measurements' / 'repeat experiment' / collect more data	AO 3 3a repeat (1) different angles / more values of X (1)
for larger angles / values of X(1)	$>20^{\circ}$		

Question Number	Answer	Additional guidance	Mark
8(b)	substitution (1) 	$5.0\left(\times 10^{8}\right)$ evaluation (1) $\left.5.2 \times 10^{-74}\right)$	AO 21
unit (1)	(3) answers that round to award 2 marks for a correct answer without working allow 1 mark for answers that round to 5.2 to any power of ten		

Question Number	Answer	Mark
8(c)(i)	red or orange	(1)
		AO 11

Question Number	Answer	Additional guidance	Mark
8(c)(ii)	green or blue or indigo or violet		(1)
	AO 1 1		

Question Number	Answer	Additional guidance	Mark
9(a)	a description to include: 1. put rock(s) in front of/near tube (1) 2. measure (count rate) separately for the two different rocks (1) 3. measure each count for the same time period (1) 4. keep source-detector distance the same for both rocks (1) 5. take (into account)/measure background count (1) 6. repeat readings and take average(s) (1)	not 'in' tube keep rocks apart	(4) AO 22

Question Number	Answer	Additional guidance	Mark
9(b)	- point after first half-life - $6,40(1)$ - point after second half-life - $12,20 \text { (1) }$ - point after third half-life - $18,10 \quad(1)$	within 1 small square by eye smooth curve starting at 80, with a decreasing gradient passing through one correct half-life point scores 2 marks smooth curve starting at 80, with a decreasing gradient passing through two correct half-life points scores 3 marks if no other mark scored smooth curve showing decreasing gradient but not going through any correct points scores 1 mark	(3) AO 3 1a

Question Number	Answer 9(c)Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme. The indicative content below is not prescriptive, and candidates are not required to include all the material which is indicated as relevant. Additional content included in the response must be scientific and relevant.	AO 11
AO3 Strand 2a and 2b (6 marks)		
-shows some idea that the data can support arguments about alpha, beta and gamma radiation being present argues that there is some evidence that alpha might be emitted (count rate going down with paper interposed) argues that there is a lot of evidence that beta parti- cles are emitted (count rate goes down a lot when the aluminium is inserted) argues that there might be some gamma getting through (lead stopping everything apart from gamma) OR that with the lead present the count rate has gone down to a level consistent with background, so no gamma was present		

Level	Mark	Descriptor			
	0	- No rewardable material.			
Level 1	$1-2$	-Deconstructs scientific information but understanding and connections are flawed. An unbalanced or incomplete argu- ment that provides limited synthesis of understanding. Level 2 - Judgements are supported by limited evidence. (AO3)			
Level 3	$5-4$	Deconstructs scientific information and provides some logi- cal connections between scientific concepts. An imbalanced argument that synthesises mostly relevant understanding, but not entirely coherently.			
- Judgements are supported by evidence occasionally. (AO3)			$	$	- Deconstructs scientific information and provide logical con-
:---					
nections between scientific concepts throughout. A bal-					
anced, well-developed argument that synthesises relevant					
understanding coherently.					

(Total for Question 9 = 13 marks)

| Question
 Number | Answer | | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1 0 (a)}$ | D vector vector
 The only correct answer is D
 A 'scalar scalar' is incorrect, both force and velocity are
 vectors
 B 'scalar vector' is incorrect, with force being described
 incorrectly as a scalar
 C 'vector scalar' is incorrect, with velocity being described
 incorrectly as a scalar | (1)
 AO 1 | |

Question Number	Answer	Additional guidance	Mark
$\mathbf{1 0 (b) (i)}$	gravitational / centripetal (1)	accept gravity / weight / gravitational field strength	(1) AO 21

Question Number	Answer	Additional guidance	Mark
$\mathbf{1 0 (b) (i i)}$	arrow from the satellite to- wards the centre of Earth - by eye (1)	direction must be clear	(1) AO 21

Question Number	Answer	Additional guidance	Mark
$\mathbf{1 0 (c) (i)}$	a description to include:	don't penalise planet instead of object wavelength (of e.m. radiation) stretched/moves to(wards) red end of spectrum decreased / frequency (1) spectral lines move towards the red end of the spectrum	AO 1 1
	(2) the (star) moves away (from us) (1)	(f)	

Question Number	Answer	Additional guidance	Mark
$\mathbf{1 0 (c) (i i)}$	- an explanation linking: \bullet big bang has expanding universe (1)	from (original) explosion started at a point	AO 11
	(2) (from each other) (1)	with galaxies moving away (not objects or planets here) the further away they are the greater is their (recessional) speed idea	

Question Number	Answer	Additional guidance	Mark
10(c)(iii)	microwave		(1) AO 1 1

Question Number	Answer	Additional guidance	Mark
10(c)(iv)	(radiation) that comes from all over the sky / space / the universe	from the big bang / explosion	(1) AO 1 1

Question Number	Answer	Additional guidance	Mark
$\mathbf{1 0 (c) (v)}$	an explanation linking: - the Big Bang theory has a beginning / initial explosion (1)	explosion from a point	AO 11
	that releases / gives out radiation (1)	radiation still present	

[^0]: *there will be situations where an AO1 question will include elements of recall of knowledge directly from the specification (up to a maximum of 15%). These will be identified by an asterisk in the mark scheme.

